Contrôle de mathématiques

controle de mathematiques					
Lycée : Louise Michel			Classe Date :	11/05/17	
Nom:					
Prénom :					
Acquises	En cours	Non Acquises	CAPACITÉS	Score	
			Connaître la dérivée, les variations de logarithme népérien	/ 16	
			Déterminer des primitives, calculer des intégrales	/4	
				Total:	
				$/20$	

Exercice 1

Dans cet exercice, on s'intéresse aux coûts en économie

Partie A: Étude d'une fonction auxiliaire

On considère la fonction g définie sur l'intervalle [0,25;10] par $g(x)=x-1-\ln(x)$.

- 1 Calculer g'(x).
- **2** Étudier les variations de la fonction g sur l'intervalle [0, 25; 10].
- **3** Déterminer les extremums de la fonction g sur l'intervalle [0, 25; 10].
- 4 En déduire le signe de q(x) suivant les valeurs de x.

Partie B: Étude d'un coût total

Le coût total de fabrication, en millier d'euros, de x centaines de litres d'un médicament est donné par : $C_T(x) = x^2 - 2 \ln x$ où $x \in [0, 25; 10]$.

- Montrer que, pour tout $x \in [0, 25; 10]$, $C'_T(x) = 2g(x)$ où g est la fonction définie dans la **partie A**.
- **2** En déduire les variations de la fonction C_T sur l'intervalle $[0,25\ ;\ 10]$.
- **a.** Calculer la dérivée seconde de la fonction C_T .
 - **b.** Étudier la convexité de la fonction C_T sur l'intervalle $[0,25\ ;\ 10]$.
 - ${\bf c.}\;$ La courbe de la fonction $C_{\scriptscriptstyle T}$ admet-elle des points d'infexion ? Si oui, déterminer leurs coordonnées.
 - d. Interpréter les résultats des questions b. et c. en termes de rythme de croissance du coût total de fabrication.

Partie C: Étude d'un coût total

Pour une production de x centaines de litres, le coût moyen de production, en millier d'euros, d'une centaine de litres est donné par : $C_{M}(x) = \frac{C_{T}(x)}{x}$.

Le coût marginal, noté C_m , représente le coût, en millier d'euros, engendré par la dernière centaine de litres produite. En économie, le coût marginal est assimilé à la dérivée du coût total de fabrication.

- 1 Déterminer l'expression du coût moyen en fonction de la production x.
- **a.** Calculer $C'_M(x)$.
 - **b.** Étudier les variations de la fonction C_M sur l'intervalle $[0,25\ ;\ 10].$
- **3** Déterminer l'expression du coût marginal en fonction de la production x.
- 4 Vérifier que lorsque le coût moyen est minimal, ilest égal au coût marginal. Donner l'équation de la tangente à la courbe de C_T au point correspondant. Que remarque-t-on?

REPONDRE AUX QUESTIONS A PARTIR D'ICI

•••••	



